From: Adolf Belka <adolf.belka@ipfire.org>
To: development@lists.ipfire.org
Subject: [PATCH] libjpeg: Update to version 2.1.4
Date: Tue, 27 Dec 2022 13:00:02 +0100 [thread overview]
Message-ID: <20221227120002.12161-11-adolf.belka@ipfire.org> (raw)
In-Reply-To: <20221227120002.12161-1-adolf.belka@ipfire.org>
[-- Attachment #1: Type: text/plain, Size: 20373 bytes --]
- Update from version 2.0.4 to 2.1.4
- Update of rootfile
- Changelog
2.1.4
### Significant changes relative to 2.1.3
1. Fixed a regression introduced in 2.1.3 that caused build failures with
Visual Studio 2010.
2. The `tjDecompressHeader3()` function in the TurboJPEG C API and the
`TJDecompressor.setSourceImage()` method in the TurboJPEG Java API now accept
"abbreviated table specification" (AKA "tables-only") datastreams, which can be
used to prime the decompressor with quantization and Huffman tables that can be
used when decompressing subsequent "abbreviated image" datastreams.
3. libjpeg-turbo now performs run-time detection of AltiVec instructions on
OS X/PowerPC systems if AltiVec instructions are not enabled at compile time.
This allows both AltiVec-equipped (PowerPC G4 and G5) and non-AltiVec-equipped
(PowerPC G3) CPUs to be supported using the same build of libjpeg-turbo.
4. Fixed an error ("Bogus virtual array access") that occurred when attempting
to decompress a progressive JPEG image with a height less than or equal to one
iMCU (8 * the vertical sampling factor) using buffered-image mode with
interblock smoothing enabled. This was a regression introduced by
2.1 beta1[6(b)].
5. Fixed two issues that prevented partial image decompression from working
properly with buffered-image mode:
- Attempting to call `jpeg_crop_scanline()` after
`jpeg_start_decompress()` but before `jpeg_start_output()` resulted in an error
("Improper call to JPEG library in state 207".)
- Attempting to use `jpeg_skip_scanlines()` resulted in an error ("Bogus
virtual array access") under certain circumstances.
2.1.3
### Significant changes relative to 2.1.2
1. Fixed a regression introduced by 2.0 beta1[7] whereby cjpeg compressed PGM
input files into full-color JPEG images unless the `-grayscale` option was
used.
2. cjpeg now automatically compresses GIF and 8-bit BMP input files into
grayscale JPEG images if the input files contain only shades of gray.
3. The build system now enables the intrinsics implementation of the AArch64
(Arm 64-bit) Neon SIMD extensions by default when using GCC 12 or later.
4. Fixed a segfault that occurred while decompressing a 4:2:0 JPEG image using
the merged (non-fancy) upsampling algorithms (that is, with
`cinfo.do_fancy_upsampling` set to `FALSE`) along with `jpeg_crop_scanline()`.
Specifically, the segfault occurred if the number of bytes remaining in the
output buffer was less than the number of bytes required to represent one
uncropped scanline of the output image. For that reason, the issue could only
be reproduced using the libjpeg API, not using djpeg.
2.1.2
### Significant changes relative to 2.1.1
1. Fixed a regression introduced by 2.1 beta1[13] that caused the remaining
GAS implementations of AArch64 (Arm 64-bit) Neon SIMD functions (which are used
by default with GCC for performance reasons) to be placed in the `.rodata`
section rather than in the `.text` section. This caused the GNU linker to
automatically place the `.rodata` section in an executable segment, which
prevented libjpeg-turbo from working properly with other linkers and also
represented a potential security risk.
2. Fixed an issue whereby the `tjTransform()` function incorrectly computed the
MCU block size for 4:4:4 JPEG images with non-unary sampling factors and thus
unduly rejected some cropping regions, even though those regions aligned with
8x8 MCU block boundaries.
3. Fixed a regression introduced by 2.1 beta1[13] that caused the build system
to enable the Arm Neon SIMD extensions when targetting Armv6 and other legacy
architectures that do not support Neon instructions.
4. libjpeg-turbo now performs run-time detection of AltiVec instructions on
FreeBSD/PowerPC systems if AltiVec instructions are not enabled at compile
time. This allows both AltiVec-equipped and non-AltiVec-equipped CPUs to be
supported using the same build of libjpeg-turbo.
5. cjpeg now accepts a `-strict` argument similar to that of djpeg and
jpegtran, which causes the compressor to abort if an LZW-compressed GIF input
image contains incomplete or corrupt image data.
2.1.1
### Significant changes relative to 2.1.0
1. Fixed a regression introduced in 2.1.0 that caused build failures with
non-GCC-compatible compilers for Un*x/Arm platforms.
2. Fixed a regression introduced by 2.1 beta1[13] that prevented the Arm 32-bit
(AArch32) Neon SIMD extensions from building unless the C compiler flags
included `-mfloat-abi=softfp` or `-mfloat-abi=hard`.
3. Fixed an issue in the AArch32 Neon SIMD Huffman encoder whereby reliance on
undefined C compiler behavior led to crashes ("SIGBUS: illegal alignment") on
Android systems when running AArch32/Thumb builds of libjpeg-turbo built with
recent versions of Clang.
4. Added a command-line argument (`-copy icc`) to jpegtran that causes it to
copy only the ICC profile markers from the source file and discard any other
metadata.
5. libjpeg-turbo should now build and run on CHERI-enabled architectures, which
use capability pointers that are larger than the size of `size_t`.
6. Fixed a regression (CVE-2021-37972) introduced by 2.1 beta1[5] that caused a
segfault in the 64-bit SSE2 Huffman encoder when attempting to losslessly
transform a specially-crafted malformed JPEG image.
2.1.0
### Significant changes relative to 2.1 beta1
1. Fixed a regression introduced by 2.1 beta1[6(b)] whereby attempting to
decompress certain progressive JPEG images with one or more component planes of
width 8 or less caused a buffer overrun.
2. Fixed a regression introduced by 2.1 beta1[6(b)] whereby attempting to
decompress a specially-crafted malformed progressive JPEG image caused the
block smoothing algorithm to read from uninitialized memory.
3. Fixed an issue in the Arm Neon SIMD Huffman encoders that caused the
encoders to generate incorrect results when using the Clang compiler with
Visual Studio.
4. Fixed a floating point exception (CVE-2021-20205) that occurred when
attempting to compress a specially-crafted malformed GIF image with a specified
image width of 0 using cjpeg.
5. Fixed a regression introduced by 2.0 beta1[15] whereby attempting to
generate a progressive JPEG image on an SSE2-capable CPU using a scan script
containing one or more scans with lengths divisible by 32 and non-zero
successive approximation low bit positions would, under certain circumstances,
result in an error ("Missing Huffman code table entry") and an invalid JPEG
image.
6. Introduced a new flag (`TJFLAG_LIMITSCANS` in the TurboJPEG C API and
`TJ.FLAG_LIMIT_SCANS` in the TurboJPEG Java API) and a corresponding TJBench
command-line argument (`-limitscans`) that causes the TurboJPEG decompression
and transform functions/operations to return/throw an error if a progressive
JPEG image contains an unreasonably large number of scans. This allows
applications that use the TurboJPEG API to guard against an exploit of the
progressive JPEG format described in the report
["Two Issues with the JPEG Standard"](https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf).
7. The PPM reader now throws an error, rather than segfaulting (due to a buffer
overrun) or generating incorrect pixels, if an application attempts to use the
`tjLoadImage()` function to load a 16-bit binary PPM file (a binary PPM file
with a maximum value greater than 255) into a grayscale image buffer or to load
a 16-bit binary PGM file into an RGB image buffer.
8. Fixed an issue in the PPM reader that caused incorrect pixels to be
generated when using the `tjLoadImage()` function to load a 16-bit binary PPM
file into an extended RGB image buffer.
9. Fixed an issue whereby, if a JPEG buffer was automatically re-allocated by
one of the TurboJPEG compression or transform functions and an error
subsequently occurred during compression or transformation, the JPEG buffer
pointer passed by the application was not updated when the function returned.
2.0.90 (2.1 beta1)
### Significant changes relative to 2.0.6:
1. The build system, x86-64 SIMD extensions, and accelerated Huffman codec now
support the x32 ABI on Linux, which allows for using x86-64 instructions with
32-bit pointers. The x32 ABI is generally enabled by adding `-mx32` to the
compiler flags.
Caveats:
- CMake 3.9.0 or later is required in order for the build system to
automatically detect an x32 build.
- Java does not support the x32 ABI, and thus the TurboJPEG Java API will
automatically be disabled with x32 builds.
2. Added Loongson MMI SIMD implementations of the RGB-to-grayscale, 4:2:2 fancy
chroma upsampling, 4:2:2 and 4:2:0 merged chroma upsampling/color conversion,
and fast integer DCT/IDCT algorithms. Relative to libjpeg-turbo 2.0.x, this
speeds up:
- the compression of RGB source images into grayscale JPEG images by
approximately 20%
- the decompression of 4:2:2 JPEG images by approximately 40-60% when
using fancy upsampling
- the decompression of 4:2:2 and 4:2:0 JPEG images by approximately
15-20% when using merged upsampling
- the compression of RGB source images by approximately 30-45% when using
the fast integer DCT
- the decompression of JPEG images into RGB destination images by
approximately 2x when using the fast integer IDCT
The overall decompression speedup for RGB images is now approximately
2.3-3.7x (compared to 2-3.5x with libjpeg-turbo 2.0.x.)
3. 32-bit (Armv7 or Armv7s) iOS builds of libjpeg-turbo are no longer
supported, and the libjpeg-turbo build system can no longer be used to package
such builds. 32-bit iOS apps cannot run in iOS 11 and later, and the App Store
no longer allows them.
4. 32-bit (i386) OS X/macOS builds of libjpeg-turbo are no longer supported,
and the libjpeg-turbo build system can no longer be used to package such
builds. 32-bit Mac applications cannot run in macOS 10.15 "Catalina" and
later, and the App Store no longer allows them.
5. The SSE2 (x86 SIMD) and C Huffman encoding algorithms have been
significantly optimized, resulting in a measured average overall compression
speedup of 12-28% for 64-bit code and 22-52% for 32-bit code on various Intel
and AMD CPUs, as well as a measured average overall compression speedup of
0-23% on platforms that do not have a SIMD-accelerated Huffman encoding
implementation.
6. The block smoothing algorithm that is applied by default when decompressing
progressive Huffman-encoded JPEG images has been improved in the following
ways:
- The algorithm is now more fault-tolerant. Previously, if a particular
scan was incomplete, then the smoothing parameters for the incomplete scan
would be applied to the entire output image, including the parts of the image
that were generated by the prior (complete) scan. Visually, this had the
effect of removing block smoothing from lower-frequency scans if they were
followed by an incomplete higher-frequency scan. libjpeg-turbo now applies
block smoothing parameters to each iMCU row based on which scan generated the
pixels in that row, rather than always using the block smoothing parameters for
the most recent scan.
- When applying block smoothing to DC scans, a Gaussian-like kernel with a
5x5 window is used to reduce the "blocky" appearance.
7. Added SIMD acceleration for progressive Huffman encoding on Arm platforms.
This speeds up the compression of full-color progressive JPEGs by about 30-40%
on average (relative to libjpeg-turbo 2.0.x) when using modern Arm CPUs.
8. Added configure-time and run-time auto-detection of Loongson MMI SIMD
instructions, so that the Loongson MMI SIMD extensions can be included in any
MIPS64 libjpeg-turbo build.
9. Added fault tolerance features to djpeg and jpegtran, mainly to demonstrate
methods by which applications can guard against the exploits of the JPEG format
described in the report
["Two Issues with the JPEG Standard"](https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf).
- Both programs now accept a `-maxscans` argument, which can be used to
limit the number of allowable scans in the input file.
- Both programs now accept a `-strict` argument, which can be used to
treat all warnings as fatal.
10. CMake package config files are now included for both the libjpeg and
TurboJPEG API libraries. This facilitates using libjpeg-turbo with CMake's
`find_package()` function. For example:
find_package(libjpeg-turbo CONFIG REQUIRED)
add_executable(libjpeg_program libjpeg_program.c)
target_link_libraries(libjpeg_program PUBLIC libjpeg-turbo::jpeg)
add_executable(libjpeg_program_static libjpeg_program.c)
target_link_libraries(libjpeg_program_static PUBLIC
libjpeg-turbo::jpeg-static)
add_executable(turbojpeg_program turbojpeg_program.c)
target_link_libraries(turbojpeg_program PUBLIC
libjpeg-turbo::turbojpeg)
add_executable(turbojpeg_program_static turbojpeg_program.c)
target_link_libraries(turbojpeg_program_static PUBLIC
libjpeg-turbo::turbojpeg-static)
11. Since the Unisys LZW patent has long expired, cjpeg and djpeg can now
read/write both LZW-compressed and uncompressed GIF files (feature ported from
jpeg-6a and jpeg-9d.)
12. jpegtran now includes the `-wipe` and `-drop` options from jpeg-9a and
jpeg-9d, as well as the ability to expand the image size using the `-crop`
option. Refer to jpegtran.1 or usage.txt for more details.
13. Added a complete intrinsics implementation of the Arm Neon SIMD extensions,
thus providing SIMD acceleration on Arm platforms for all of the algorithms
that are SIMD-accelerated on x86 platforms. This new implementation is
significantly faster in some cases than the old GAS implementation--
depending on the algorithms used, the type of CPU core, and the compiler. GCC,
as of this writing, does not provide a full or optimal set of Neon intrinsics,
so for performance reasons, the default when building libjpeg-turbo with GCC is
to continue using the GAS implementation of the following algorithms:
- 32-bit RGB-to-YCbCr color conversion
- 32-bit fast and accurate inverse DCT
- 64-bit RGB-to-YCbCr and YCbCr-to-RGB color conversion
- 64-bit accurate forward and inverse DCT
- 64-bit Huffman encoding
A new CMake variable (`NEON_INTRINSICS`) can be used to override this
default.
Since the new intrinsics implementation includes SIMD acceleration
for merged upsampling/color conversion, 1.5.1[5] is no longer necessary and has
been reverted.
14. The Arm Neon SIMD extensions can now be built using Visual Studio.
15. The build system can now be used to generate a universal x86-64 + Armv8
libjpeg-turbo SDK package for both iOS and macOS.
2.0.6
### Significant changes relative to 2.0.5:
1. Fixed "using JNI after critical get" errors that occurred on Android
platforms when using any of the YUV encoding/compression/decompression/decoding
methods in the TurboJPEG Java API.
2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`:
- Fixed segfaults or "Corrupt JPEG data: premature end of data segment"
errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or
4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that
is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 2.0.0[6] was a
similar fix, but it did not cover all cases.
- `jpeg_skip_scanlines()` now throws an error if two-pass color
quantization is enabled. Two-pass color quantization never worked properly
with `jpeg_skip_scanlines()`, and the issues could not readily be fixed.
- Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when
skipping past the end of an image.
3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW
toolchains targetting Arm64 (AArch64) Windows binaries.
4. Fixed unexpected visual artifacts that occurred when using
`jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC
scan of a progressive JPEG image.
5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component
JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8
API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.)
2.0.5
### Significant changes relative to 2.0.4:
1. Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
in the libjpeg-turbo regression tests. Specifically, the
`jsimd_h2v1_downsample_dspr2()` and `jsimd_h2v2_downsample_dspr2()` functions
in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
fixed, and other functions that are incompatible with big endian MIPS CPUs are
disabled when building libjpeg-turbo for such CPUs.
2. Fixed an oversight in the `TJCompressor.compress(int)` method in the
TurboJPEG Java API that caused an error ("java.lang.IllegalStateException: No
source image is associated with this instance") when attempting to use that
method to compress a YUV image.
3. Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
overrun in cjpeg, TJBench, or the `tjLoadImage()` function if one of the values
in a binary PPM/PGM input file exceeded the maximum value defined in the file's
header and that maximum value was less than 255. libjpeg-turbo 1.5.0 already
included a similar fix for binary PPM/PGM files with maximum values greater
than 255.
4. The TurboJPEG API library's global error handler, which is used in functions
such as `tjBufSize()` and `tjLoadImage()` that do not require a TurboJPEG
instance handle, is now thread-safe on platforms that support thread-local
storage.
Signed-off-by: Adolf Belka <adolf.belka(a)ipfire.org>
---
config/rootfiles/common/libjpeg | 5 +++++
lfs/libjpeg | 6 +++---
2 files changed, 8 insertions(+), 3 deletions(-)
diff --git a/config/rootfiles/common/libjpeg b/config/rootfiles/common/libjpeg
index eb74d2c50..74c101854 100644
--- a/config/rootfiles/common/libjpeg
+++ b/config/rootfiles/common/libjpeg
@@ -9,6 +9,11 @@
#usr/include/jmorecfg.h
#usr/include/jpeglib.h
#usr/include/turbojpeg.h
+#usr/lib/cmake/libjpeg-turbo
+#usr/lib/cmake/libjpeg-turbo/libjpeg-turboConfig.cmake
+#usr/lib/cmake/libjpeg-turbo/libjpeg-turboConfigVersion.cmake
+#usr/lib/cmake/libjpeg-turbo/libjpeg-turboTargets-release.cmake
+#usr/lib/cmake/libjpeg-turbo/libjpeg-turboTargets.cmake
#usr/lib/libjpeg.so
usr/lib/libjpeg.so.8
usr/lib/libjpeg.so.8.2.2
diff --git a/lfs/libjpeg b/lfs/libjpeg
index 6808640a4..b9c9d3cd8 100644
--- a/lfs/libjpeg
+++ b/lfs/libjpeg
@@ -1,7 +1,7 @@
###############################################################################
# #
# IPFire.org - A linux based firewall #
-# Copyright (C) 2007-2020 IPFire Team <info(a)ipfire.org> #
+# Copyright (C) 2007-2022 IPFire Team <info(a)ipfire.org> #
# #
# This program is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
@@ -24,7 +24,7 @@
include Config
-VER = 2.0.4
+VER = 2.1.4
THISAPP = libjpeg-turbo-$(VER)
DL_FILE = $(THISAPP).tar.gz
@@ -40,7 +40,7 @@ objects = $(DL_FILE)
$(DL_FILE) = $(DL_FROM)/$(DL_FILE)
-$(DL_FILE)_BLAKE2 = 9be870a5bafaae279646941b848b69fdf7c95ec08a686b01674f473ef33fe5923a04ba8a2d57df84384530308ca46fc3880a404c0eff769129417a553faed3bb
+$(DL_FILE)_BLAKE2 = 80ffd77d58a37eae0bdc1868d994f34ea52c13e2624c720b1d0b6ec4d6d14b16911163ccd4009c8d6eda214f31e1fff78bb7eb4739ae6589d0fd8c7008c0e972
install : $(TARGET)
--
2.39.0
next prev parent reply other threads:[~2022-12-27 12:00 UTC|newest]
Thread overview: 21+ messages / expand[flat|nested] mbox.gz Atom feed top
2022-12-27 11:59 [PATCH] curl: Update to version 7.87.0 Adolf Belka
2022-12-27 11:59 ` [PATCH] harfbuzz: Update to version 6.0.0 Adolf Belka
2022-12-29 11:21 ` Peter Müller
2022-12-27 11:59 ` [PATCH] libcap: Update to version 2.66 Adolf Belka
2022-12-29 11:20 ` Peter Müller
2022-12-27 11:59 ` [PATCH] libcdada: Update to version 0.4.0 Adolf Belka
2022-12-29 11:19 ` Peter Müller
2022-12-27 11:59 ` [PATCH] libconfig: Update to version 1.7.3 Adolf Belka
2022-12-27 11:59 ` [PATCH] libexif: Update to version 0.6.24 Adolf Belka
2022-12-27 16:15 ` Peter Müller
2022-12-27 11:59 ` [PATCH] libffi: Update to version 3.4.4 Adolf Belka
2022-12-27 16:13 ` Peter Müller
2022-12-27 11:59 ` [PATCH] libgpg-error: Update to version 1.46 Adolf Belka
2022-12-29 11:19 ` Peter Müller
2022-12-27 12:00 ` [PATCH] libidn: Update to version 1.41 Adolf Belka
2022-12-27 16:17 ` Peter Müller
2022-12-27 12:00 ` [PATCH] libinih: Update to version r56 Adolf Belka
2022-12-27 16:16 ` Peter Müller
2022-12-27 12:00 ` Adolf Belka [this message]
2022-12-27 16:12 ` [PATCH] libjpeg: Update to version 2.1.4 Peter Müller
2022-12-29 11:21 ` [PATCH] curl: Update to version 7.87.0 Peter Müller
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20221227120002.12161-11-adolf.belka@ipfire.org \
--to=adolf.belka@ipfire.org \
--cc=development@lists.ipfire.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox